The new Science and Engineering Complex (SEC), located on Harvard University’s emerging Allston campus, integrates one of the country’s most diverse and exciting engineering programs into a single 500,000-square-foot structure. As the primary home of the John A. Paulson School of Engineering and Applied Sciences (SEAS), the state-of-the-art complex defines a new series of environments that support SEAS’ profound commitment to interdisciplinary collaboration both in teaching and research, and exploits these qualities to create vibrant public spaces at a variety of scales throughout the building.
The SEC stretches more than five hundred feet along Western Avenue. Its building massing forms a new landscaped courtyard space suitable for outdoor recreation and events towards the site’s center, while the balance of the site to the south is preserved for future development. The building is expressed as a series of floating, highly flexible research boxes above a two-story transparent plinth comprised of the more public, active elements of the program. This plinth adopts an architectural language of terracing elements as it reaches south to define the courtyard, establishing a building scale that respects the adjacent residential fabric.
Organizationally the building follows the massing logic, classrooms, teaching labs, and amenity spaces occupying the lower plinth floors in order to take advantage of proximity to the street and courtyard, while research labs in the upper volumes maintain appropriate levels of solitude and security. All six above-grade and both below-grade levels are connected vertically by a central atrium space facing south toward the courtyard, which delivers daylight to all floors and serves as the communicative heart of the complex. Smaller distributed atria punctuate other areas of the building away from the atrium and define more local neighborhood groupings.
The façade design calibrates the scale of the SEC, creates an identity for the complex, and plays a crucial role in the energy performance and occupant comfort in the building. On the two lower floors, highly transparent glass ribbons open outward toward the public realm and are shaded by the deep overhang of the slab edges and by supplementary light shelves, which also serve to reflect daylight deeper into the building interior. The upper research boxes are sheathed in a sophisticated screen enclosure that unifies the volumes visually while masking the overall scale of these elements. Depending on its orientation and solar angle, this screen is precisely dimensioned to shield the building interior from solar heat gain during warmer months while it lets beneficial sun in during the winter, thus significantly reducing cooling and heating loads on the mechanical plant. The screen is also calculated to reflect daylight towards the interior while maintaining large view apertures to the exterior. All façade systems incorporate operable vents for natural ventilation and require stringent levels of thermal performance to maximize energy savings.
The design of the Science and Engineering Complex project pulls together a number of threads of contemporary life, which will certainly influence future generations: engineering’s decisive influence on the discovery and resolution of some of the world's most intractable problems; the critical importance of cross-disciplinary efforts to achieve major research initiatives; and genuine leadership in the area of sustainable design and urban development.
Status: Under Construction
Location: Boston, MA, US
Firm Role: Architect